ХИМИЧЕСКАЯ ИНФОРМАТИКА: ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ

Лекция 8

Информатика материалов (первая лекция)

МНОГООБРАЗИЕ ЗАДАЧ И ОБЪЕКТОВ

MATERIALS FINGERPRINTS

Reveil et al Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation Mol Syst Des & Engin (2018)

ATOM-CENTERED SYMMETRY FUNCTIONS

Отпечатки, основанные на определении функции симметрии базируются на суммировании по связям и углам для всех атомов в пределах заданного радиуса

Атомно-центрированные функции симметрии (ACSFs): Behler and Parinello

$$\begin{aligned} G_{i}^{rad} &= \sum_{j \neq i}^{N} e^{-\eta (r_{ij} - \mu)^{2}} f_{c}(r_{ij}) \\ f_{c}(r_{ij}) &= \begin{cases} \frac{1}{2} \left[\cos\left(\frac{\pi r_{ij}}{r_{c}}\right) + 1 \right], r_{ij} \leq r_{c} \\ 0, r_{ij} \geq r_{c} \end{cases} \\ G_{i}^{ang} &= 2^{1-\zeta} \sum_{j \neq i}^{N} \sum_{k \neq i,j}^{N} (1 + \lambda \cos \Theta_{ijk})^{\zeta} e^{-\eta (r_{ij} - \mu)^{2}} e^{-\eta (r_{ik} - \mu)^{2}} e^{-\eta (r_{jk} - \mu)^{2}} f_{ij} f_{ik} f_{jk} \end{aligned}$$

 G_i^{rad} and G_i^{ang} - atom-centered function

 r_{ii} - distances to all atoms j within a cutoff radius r_c

 η and μ - width and center of Gaussians (empirically defined)

 f_c - cutoff function (smoothing impact as a function of distance)

Limitation: Empirical parametrization of symmetry functions

Reveil et al Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation Mol Syst Des & Engin (2018)

Behler et al Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces Phys. Rev. Lett. 98, 146401

ATOM-CENTERED SYMMETRY FUNCTIONS

Reveil et al Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation Mol Syst Des & Engin (2018)

Behler et al Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces Phys. Rev. Lett. 98, 146401

BISPECTRUM FINGERPRINTS

$$\rho_i(r) = \delta(r) + \sum_j \delta(1 - r_{ij}) f_c(|r_{ij}|) \qquad \text{where } f_c(r_{ij}) = \begin{cases} \frac{1}{2} \left[\cos\left(\frac{\pi r_{ij}}{r_c}\right) + 1 \right], r_{ij} \le r_c \\ 0, r_{ij} \ge r_c \end{cases}$$

In order to achieve rotational invariance the spherical coordinates can be used. Bispectrum – three-point correlation function that can be used to describe the atomic neighborhood

Atomic density is projected onto the surface of the four-dimensional unit sphere:

$$r \equiv \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longrightarrow \begin{array}{l} \phi = \arctan(\frac{y}{x}) \\ \theta = \arccos(z/|r|) \\ \theta_0 = \pi |r|/r_0 \end{array}$$

where ϕ , θ , θ_0 – polar angles; $r_0 > r_{cut}/\pi$

4D spherical harmonics (Wigner matrices $U_{m,m}^{j}$) – complete basis for the interior of the 3D sphere

The projection of the atomic density on the surface of the 4D sphere can be represented through the set of the ordinary Clebsch-Gordon coefficients that are expansion coefficients of total angular momentum eigenstates:

$$c_{m'm}^{j} = \left\langle U_{m'm}^{j} | \rho \right\rangle$$

$$B_{j_{1},j_{2},j} = \sum_{m'_{1},m_{1}=-j_{1}}^{j_{1}} \sum_{m'_{2},m_{2}=-j_{2}}^{j_{2}} \sum_{m',m=-j}^{j} (c_{m'm}^{j}) c_{j_{1},m_{1},j_{2},m_{2}}^{jm} c_{j_{1},m'_{1}j_{2}m'_{2}}^{jm} c_{m'_{1}m_{1}}^{j_{1}} c_{m'_{2}m_{2}}^{j_{2}}$$

Bartok et al Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons Phys Rev Lett (2010) 104, 136403

Bartok et al On representing chemical environments Phys Rev (2013) 87, 184115

SMOOTH OVERLAP OF ATOMIC POSITIONS (SOAP) SIMILARITY KERNELS

Локальная атомная конфигурация $\tilde{x_l}$ может быть выражена определена посредством сглаженных атомных плотностей, центрированных на атоме *l*:

$$\rho_i(r) = \sum_j \omega(z_i)\varphi_\sigma(r - r_{ij})f_c(|r_{ij}|) \quad \text{where } f_c(r_{ij}) = \begin{cases} \frac{1}{2} \left[\cos\left(\frac{\pi r_{ij}}{r_c}\right) + 1 \right], r_{ij} \le r_c \\ 0, r_{ij} \ge r_c \end{cases}$$

 z_i – atomic number

 ω_i – associated with given atomic type weight

Атомные плотности заданы посредством гауссовых функций с дисперсией σ^2

 $\varphi_{\sigma}(r) = exp(-r^2/2\sigma^2)$

Определение ядра как перекрывания двух локальных атомных плотностей, интегрированное с учетом всех возможных трехмерных вращений и инвариантного по отношению к вращению:

$$S(\tilde{x}, \tilde{x}') = \int_{\mathbb{R}^3} \rho_{\tilde{x}}(r) \rho_{\tilde{x}'}(r) dr \qquad k(\tilde{x}, \tilde{x}') = \int_{SO(3)} S(R\tilde{x}, \tilde{x}')^p dR$$

Нормализованное ядро (кернел) с увеличением в областях наибольшего значения, принимаемого функцией при $\zeta > 1$:

$$\widetilde{K}(\widetilde{x},\widetilde{x}') = \left[\frac{k(\widetilde{x},\widetilde{x}')}{\sqrt{k(\widetilde{x},\widetilde{x})k(\widetilde{x}',\widetilde{x}')}}\right]^{\zeta}$$

Graph interpretation of the SOAP kernel. Two local environments comprised of 3 and 4 atoms are compared by forming a bipartite graph that links pairs of atoms

STEINHARDT ORDER PARAMETERS

The complex vector $q_{lm}(i)$ of particle *i* is defined as follows:

$$q_{lm}(i) = \frac{1}{N_b(i)} \sum_{i=1}^{N_b(i)} Y_{lm}(r_{ij})$$

 $Y_{lm}(r_{ij})$ – spherical harmonics

Steinhardt order parameters:

$$q_{l}(i) = \sqrt{\frac{4\pi}{2l+1} \sum_{m=-l}^{l} |q_{lm}(i)|^{2}}$$
$$S_{ij} = \sum_{m=-6}^{6} q_{6m}(i) q_{6m}^{*}(i)$$

Two particles are connected if $S_{ij} > 0.5$ A particle is solidlike if $N_{connect} > 6$, otherwise - liquidlike

Lechner et al Accurate determination of crystal structures based on averaged local bond order parameters J Chem Phys (2008) 129, 114707

MORTON SPACE-FILLING CURVES

Basic steps:

- Orientation along the principal moments of inertia
- Cartesian to spherical coordinates mapping
- Four-dimensional grid formation
- Compressing to one-dimensional vector

ФРАГМЕНТНЫЕ ДЕСКРИПТОРЫ ДЛЯ ПРОГНОЗИРОВАНИЯ СВОЙСТВ НЕОРГАНИЧЕСКИХ КРИСТАЛЛИЧЕСКИХ СОЕДИНЕНИЙ

Структурный тип

Полиэдр Вороного-Дирихле

Генерация графа, ассоциирование вершин графа со значением выбранных ключевых параметров, описывающих свойства образующих его химических элементов

Генерация фрагментов

Isayev et al Universal fragment descriptors for predicting properties of inorganic crystals Nature Commun. 2017; 8: 15679

КОРРЕЛИРОВАННЫЙ БЕСПОРЯДОК

Overy et al Design of crystal-like aperiodic solids with selective disorder-phonon coupling (2016) Nature Comm 7:10445 Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

COMMON NEIGHBOR ANALYSIS: SIGNATURE

Controlling microscopic nature:

- Nanoscale colloidal crystals
- Micro-sized colloids

ФРАГМЕНТНЫЕ ДЕСКРИПТОРЫ ДЛЯ ПРОГНОЗИРОВАНИЯ СВОЙСТВ НЕОРГАНИЧЕСКИХ КРИСТАЛЛИЧЕСКИХ СОЕДИНЕНИЙ

Aeschynite A³⁺B⁴⁺C⁵⁺O₆ (SG: *Pnma*) A=RE(57-63), B=Ti⁴⁺, C=TM Structure parameter

 $\mathsf{P} = m \cdot n/2^d$

m – relative number of polyhedra connected similarly

- n order of the point group symmetry
- *d* connectivity type (nodes, edges, grains)

ELECTRONIC FINGERPRINTS

Isayev et al Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints Chem Mater (2015) 27,735

СКРИНИНГ СОЕДИНЕНИЙ С ЗАДАННЫМИ СВОЙСТВАМИ

MATERIALS CARTOGRAPHY: REPRESENTING AND MINING MATERIALS SPACE FOR SCREENING OF MATERIALS WITH TARGET PROPERTIES

Isayev et al Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints Chem Mater (2015) 27,735

ПРОГНОЗИРОВАНИЕ СТРУКТУРЫ

ПРОГНОЗИРОВАНИЕ СТРУКТУРЫ

ПОИСК НОВЫХ МЕТАСТАБИЛЬНЫХ АЗОТ-НАСЫЩЕННЫХ НИТРИДОВ

	nitrides	oxides	all inorganic solids
no. of unique ICSD phases	1253	13 497	29 902
percent metastable $(T = 0 \text{ K})$	59.8%	56.0%	51.6%
$\Delta H(E - E_{\rm GS})$ – median	67 meV/atom	15.4 meV/atom	14.9 meV/atom
$\Delta H(E - E_{GS}) - 90$ th percentile	190 meV/atom	62 meV/atom	70 meV/atom
median cohesive energy	-6.38 eV/atom	-6.26 eV/atom	-4.88 eV/atom
electronegativity	3.02	3.44	

Sun et al Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides Chem. Mater. 2017, 29, 6936–6946

ПОИСК НОВЫХ МЕТАСТАБИЛЬНЫХ АЗОТ-НАСЫЩЕННЫХ НИТРИДОВ

Sun et al Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides Chem. Mater. 2017, 29, 6936–6946

ПОИСК НОВЫХ МЕТАСТАБИЛЬНЫХ АЗОТ-НАСЫЩЕННЫХ НИТРИДОВ

nitride compd	prototype ICSD ID	prototype structure	space group	E abv hull (eV/atom)	decomp products	pernitride	critical μN_2 (eV/atom)
RuN2*b	167872	RhN ₂	F43m	0.10	$Ru + N_2$	N	0.20
Nb ₃ N ₅	76460	Ta_3N_5	Cmcm	0.03	$Nb_5N_6 + N_2$	N	0.20
Sn ₃ N ₄ * ^c	89525	Sn_3N_4	Fd3m	0.16	$Sn + N_2$	N	0.29
V_3N_4	100135	Si ₃ N ₄	$P2_1/m$	0.04	$VN + N_2$	N	0.30
ReN2*d	187441	ReN ₂	C2/m	0.23	$Re_3N + N_2$	Y	0.41
RuN2*b	240754	RuN_2	Pmnn	0.30	$Ru + N_2$	N	0.45
PtN2*	166462	PtN ₂	Pa3	0.30	$Pt + N_2$	Y	0.45
ReN	162871	BN	Cm	0.16	$\text{Re}_3\text{N} + \text{N}_2$	N	0.48
OsN2*	260545	OsN ₂	P6/mmm	0.35	$Os + N_2$	N	0.52
FeN ₂	240759	OsN ₂	Pnnm	0.18	$FeN + N_2$	Y	0.54
IrN2*f	240755	IrN_2	$P2_1/c$	0.38	$Ir + N_2$	Y	0.57
Ti ₃ N ₄	78944	Zr_3N_4	Pnma	0.09	$TiN + N_2$	N	0.60
Re ₃ N ₄	156339	Ge ₃ N ₄	Pnma	0.27	$\text{Re}_3\text{N} + \text{N}_2$	N	0.64
PdN2*g	191244	PdN ₂	Pnnm	0.44	$Pd + N_2$	Y	0.65
Re_3N_5	95782	P_3N_5	Imm2	0.34	$\text{Re}_3\text{N} + \text{N}_2$	N	0.68
Re ₂ N	181874	Re ₂ N	P63/mmc	0.08	$\text{Re}_3\text{N} + \text{N}_2$	N	0.72
SbN	162883	BN	$P_2 1/c$	0.40	$Sb + N_2$	N	0.80
Cu_2N_2	60168	MoN	$P\overline{1}$	0.40	$Cu + N_2$	Y	0.81
CrN ₂	240754	RuN_2	Pnnm	0.27	$CrN + N_2$	Y	0.82
Na ₃ N* ^h	421115	Na ₃ N	$Pm\overline{3}m$	0.21	$Na + N_2$	N	0.84
Cr_3N_4	156339	Ge ₃ N ₄	Pnma	0.13	$CrN + N_2$	N	0.92
Mn_3N_4	100135	Si ₃ N ₄	$P2_1/m$	0.13	$MnN + N_2$	N	0.92
Mo ₃ N ₅	95782	P_3N_5	Imm2	0.22	$MoN + N_2$	N	0.97
Ti_3N_4	92156	Si_3N_4	P31c	0.14	$TiN + N_2$	N	1.00
Cu ₃ N* ^I	53313	Cu ₃ N	$Pm\overline{3}m$	0.26	$Cu + N_2$	N	1.04
Pb_3N_2	91273	$NiSr_2N_2$	Pnma	0.42	$Pb + N_2$	N	1.05
TiN ₂ * ^j	N/A	TiN ₂	I4/mcm	0.39	$TiN + N_2$	N	1.18
MoN ₂ * ¹	260549	OsN ₂	P4/mbm	0.38	$MoN + N_2$	Y	1.23
Pb_3N_4	41952	C_3N_4	R3m	0.75	$Pb + N_2$	Y	1.32
Pb ₃ N ₂	182699	Nb_2N_3	Pnma	0.54	$Pb + N_2$	N	1.35
Mo_2N_3	16528	MoNCl ₃	$P\overline{1}$	0.24	$MoN + N_2$	N	1.37
BiN	162876	BN	Pnma	0.72	$Bi + N_2$	N	1.44
Pd_3N_2	162795	Ca_3N_2	C2/m	0.58	$Pd + N_2$	N	1.46

Perspectives:

- Down-conversion nitride materials
- Localized surface plasmon resonance materials

АНАЛИЗ ЛОКАЛЬНОЙ СТРУКТУРЫ МАТЕРИАЛА

Анализ локальной структуры материала

Определение локальной структуры материала при недостаточной информативности структурного фактора (несколько кристаллографических фаз, присутствие сложных дефектов): многомерный статистический анализ координационных сфер отдельных атомов с использованием метрики между атомом и его окружением для определения структуры и симметрии

Belianinov et al Identification of phases, symmetries and defects through local crystallography Nature Communications (2015), 6, 7801

Анализ локальной структуры материала

Two-phase Mo-V-Te-Ta oxide

Belianinov et al Identification of phases, symmetries and defects through local crystallography Nature Communications (2015), 6, 7801

Анализ локальной структуры материала

Belianinov et al Identification of phases, symmetries and defects through local crystallography Nature Communications (2015), 6, 7801

АНАЛИЗ ЛОКАЛЬНОЙ СТРУКТУРЫ МАТЕРИАЛА: ИСПОЛЬЗОВАНИЕ МЕТОДОВ ГЛУБОКОГО ОБУЧЕНИЯ

Возможности:

- Анализ кристаллических решеток и структуры и типа дефектов
- Уточнение типа структуры
- Извлечение значимых структурных/химических параметров

Обучающий набор данных (искусственные данные, мимикрирующие данные STEM):

- Идеальная кристаллическая решетка
- Решетка с присутствием вакансии
- Атом-допант с большим атомным номером

- Finding atomic positions from raw experimental data
- Pixel-wise recognition of atomic defects and lattice reconstructions
- Possible chemical structure-related interpretation of output

Maxim Ziatdinov et al Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations ACS Nano 2017 11 (12), 12742-12752

CONVOLUTIONAL NEURAL NETWORKS

АНАЛИЗ ЛОКАЛЬНОЙ СТРУКТУРЫ МАТЕРИАЛА: ИСПОЛЬЗОВАНИЕ МЕТОДОВ ГЛУБОКОГО ОБУЧЕНИЯ

Maxim Ziatdinov et al Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations ACS Nano 2017 11 (12), 12742-12752

АНАЛИЗ ЛОКАЛЬНОЙ СТРУКТУРЫ МАТЕРИАЛА: ИСПОЛЬЗОВАНИЕ МЕТОДОВ ГЛУБОКОГО ОБУЧЕНИЯ

Maxim Ziatdinov et al Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations ACS Nano 2017 11 (12), 12742-12752

АНАЛИЗ ПРОЦЕССОВ, ПРОИСХОДЯЩИХ НА ИНТЕРФЕЙСАХ: МЕЖЗЁРЕННЫЕ ГРАНИЦЫ

PHASE BEHAVIOR OF INTERFACES: COMPLEXIONS

Grain boundary (GB) can be viewed as interface-stabilized "complexion" phase that can be formed between different crystals within a material and that are chemically and structurally distinct from any bulk phases and can be chemically and structurally inhomogenious Nanoscale interface structures are equilibrium phases that obey thermodynamic rules analogous to those of bulk phases

A number of unexplained observations concerned:

- abnormal grain growth
- deliberate incorporation of certain atomic elements into grain boundaries can drastically change the materials properties

THE IMPORTANCE OF GRAIN BOUNDARY COMPLEXIONS IN AFFECTING PHYSICAL PROPERTIES

Some effects of complexions on diffusional transport and physical properties

- Non-Arrhenius enhancement of diffusional transport limited processes such as sintering and grain growth, unascertained impact on ion diffusion processes
- Activated sintering process
- Coarse grain structure obtained after prolonged annealing at high t^o on average exhibit different complexions -> complex unexpected materials behavior
- The presence of localized phonon modes as a result of layering transitions may lead to modified localized interfacial vibrational modes

THE PHASE BEHAVIOR OF INTERFACES: MICROWAVE DIELECTRIC PROPERTIES

Aeschynites/Euxenites

Zhang et al Phase structural transition and microwave dielectric properties in isovalently substituted $La_{1-x}Ln_xTiNbO_6$ (Ln=Ce, Sm) ceramics Ceramics International 43 (2017) 7065–7072

ANALYSIS OF INTERFACE PROCESSES IN CERAMICS: GRAIN BOUNDARIES

(b) EA variation operations

ANALYSIS OF INTERFACE PROCESSES IN CERAMICS: GRAIN BOUNDARIES (GB)

MATERIALS SYNTHESIS DETAILS AS PARAMETERS UNRAVELING COMPOSITION-STRUCTURE-PROPERTY RELATIONSHIPS

VIRTUAL SCREENING OF INORGANIC MATERIALS SYNTHESIS PARAMETERS WITH DEEP LEARNING

Descriptors:

processing (synthesis) information – sintering and calcination temperature and time, method of synthesis, solvent

Tasks:

- SrTiO3/BaTiO3 synthesis details discriminating
- MnO2 polymorph elucidation

VIRTUAL SCREENING OF INORGANIC MATERIALS SYNTHESIS PARAMETERS WITH DEEP LEARNING

Kim et al npj Computational Materials (2017) 53